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A New Equivalent Network Method for
Analyzing Discontinuity Properties of
Open Dielectric Waveguides

HIROSHI SHIGESAWA, SENIOR MEMBER, IEEE, AND MIKIO TSUJI, MEMBER, IEEE

Abstract — A novel network approach is proposed for analyzing interact-
ing discontinuities on open planar dielectric waveguides by accurately
taking account of both surface modes and waves with continuous spectra.
In our approach, a continuum of the radiation wave is recomposed into a
set of the newly defined “spectral composite” modes, each of them
carrying a finite magnitude of radiation power, and these new modes, in
conjunction with surface modes, construct the complete orthonormal set
for expressing an arbitrary local field on a dielectric slab waveguide. This
idea allows us to provide the modal voltages and currents of the spectral
composite modes in the identical definition with those for the surface
modes with discrete eigenvalues, thereby developing an equivalent network
approach effective for solving discontinuity problems, even on an open
waveguide, with the familiar approach for closed waveguide problems. A
number of numerical results are shown to prove the usefulness of our
approach.

I. INTRODUCTION'

PEN DIELECTRIC waveguides have become in-
Ocreasingly important in the past few years, particu-
larly in connection with integrated circuits ranging from
millimeter-wave to optical frequencies [1], [2]. In such an
open waveguide, however, the discontinuities often give
rise to serious problems in circuit performance, and it has
recently become necessary to extensively analyze the dis-
continuity problems with high precision.

In previous papers [3], [4] we described the feature of
mode propagation through an isolated step discontinuity
from a full-wave analytical point of view, and clarified the
behavior of both the radiation field and the surface wave
field. Practical circuits, however, usually do not include a
discontinuity as an isolated case; rather, they consist of an
arbitrary combination of discontinuities connected via the
interconnecting homogeneous dielectric waveguides. On
such a discontinuous structure, the fields vary with the
successive positions along it. Thus it is necessary to con-
sider rigorously the field continuity conditions on the
whole boundary surface of the structure by taking into
account the effect not only of the conversion of power
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among the surface modes and the scattering of power into
the radiation modes [5] but also of the coupling of the
power of the radiation mode into both surface modes and
the other radiation modes. However, each of the radiation
modes is certainly not an eigenmode like a surface mode
characterized by each of the discrete propagation con-
stants, and its power intensity is infinite according to the
orthonormal relation expressed by the Dirac delta func-
tion. Therefore the scattered and coupled powers men-
tioned above should be discussed by always considering a
continuum of the radiation modes. This fact has been one
of the main reasons making it almost impossible to de-
velop a simple and effective equivalent network approach
for analyzing open dielectric waveguide problems, al-
though an equivalent network approach is quite familiar to
microwave engineers dealing with closed waveguide prob-
lems [6].

Now, the functional forms of the modal functions them-
selves of both surface modes and radiation modes do not
change as they propagate along a homogeneous slab
waveguide, but their complex amplitude and the continu-
ous spectral amplitude change. The change in the complex
amplitude of each of surface modes is easily pictured by
the simple network model consisting of uncoupled, parallel
transmission lines, even for a slab waveguide of the open
type. Contrary to this, it is almost impossible to picture the
change in the continuous spectral amplitude of radiation
modes in the same fashion as the surface modes, and, as an
intermediate step, it is natural to expand the varying
continuous spectral function into a discrete sequence of
functions belonging to a complete set.” As will be shown
below, this idea makes it possible to overcome the diffi-
culty mentioned previously. A similar expression appeared
in [7] and [8] in connection with an isolated step disconti-
nuity, but problems of its combination were not discussed
at all.

On the other hand, Rozzi et al. [9] expanded not the
varying spectral function, but the nonvarying modal func-
tions into a discrete sequence of the complete function
defined in the coordinate space. This approach, therefore,
leaves the radiation mode still in the form of a continuum,
and their idea does not basically release us from the
difficulty of developing a simple equivalent network.

0018-9480,/89 /0100-0003501.00 ©1989 IEEE
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Fig. 1. Planar dielectric waveguide uniform in the x direction.

This paper initiates a breakthrough in surmounting this
difficulty. Our idea certainly is based on the expansion of
the continuous spectral amplitude, but we recompose it to
have a discrete set of an infinite number of newly defined
“spectral composite” modes [10], which construct the com-
plete orthonormal set for expressing an arbitrary local field
in conjunction with the surface modes. It is also proved
that each of the spectral composite modes carries a finite
magnitude of radiation power according to the orthonor-
mal relation expressed not by the Dirac delta function, but
by the Kronecker delta symbol, such as the surface modes.
This means that the terminal parameters (root power am-
plitude, wave impedance, etc.) of the equivalent network
for the spectral composite modes can be defined identi-
cally with those for the surface modes, and we can allocate
the discrete terminal ports to each of the two types of
mode. As a result, our approach, unlike Rozzi’s, can treat
independently each of the isolated step discontinuities and
the interconnecting homogeneous slab waveguides as a
building block in a usual equivalent network.

After explaining briefly our idea and developing a math-
ematical formulation in Section II, the effectiveness of our
approach will be demonstrated by comparing it with pub-
lished results in Section III-A. These results are then
applied to discuss the wave behavior along dielectric corru-
gations of finite extent on slab waveguides of the open
type in Section III-B.

II. GENERAL APPROACH

A. Homogeneous Dielectric Waveguide and Spectral
Composite Mode

To make our idea clear, we first consider a homogeneous
dielectric slab waveguide of the type shown in Fig. 1. We
assume here that M surface modes and the radiation
modes polarized in the x direction are traveling to the
positive z direction. Let e, (y), #,(y) and e, (y,p),
h,(y,p) be the orthonormal modal functions of the jth
surface mode and the radiation mode, respectively (see [5]
for their functional forms). Here p denotes the transverse
wavenumber of the radiation mode in the y direction
outside the slab. Each type of modal function is normal-
ized in terms of the Kronecker delta symbol or Dirac delta
function as noted in [5, sec. 8.5]. Although the wavenum-
ber p covers all of the values from 0 to oo, the radiation
modes in the range 0 < p < nyk, are propagating into the z
direction, while those in the range n,k, < p < oo are non-
propagating. Therefore, the total electric field E,(y, z;) on

the plane at z = z; is completely expressed! by the follow-
ing equation [5]:

M—1
Ex(yt' Zl) = Z Am(zl)exm(y)
m=0
+fn°k°f(p,zl)ex(y,p)dp
0

+fa"°k°g(p, z)e (y.p)dp (1)

noko

where f(p,z;) and g(p,z;) are the continuous spectral
functions for the radiation modes at z =z, and the coeffi-
cients A4,,(z;) stand for the root-power amplitude of the
surface modes.

Now, the clectric field of (1) after propagating to the
plane at z =z,(> z; with d =z, z;) can be written as
follows:

M-1
Ex(y722) = Z Bm(ZZ)exm(y)

m=90
noko

+ o f(P>Zz)ex()’»P) dp
angk

+ [T g(p,z)eyp)de (2)
RgKg

where
B, (z,)=A,(z;)exp(— jB,d)
f(p.2;) =1(p,z)exp(— jB(p)d)

g(p,2,) =g(p,z)exp(—v(p)d). (3)

B, is the phase constant of the mth surface mode, while

Bp) =y (noky)’—p* and B(p) = — jy/p* = (nok,)’ =
— jy(p) are the phase constants of the propagating and
the nonpropagating radiation modes, respectively.

The modal functions of both surface modes and radia-
tion modes in (1) and (2) do not change as they propagate
along the guide axis. Then, there is a one-to-one corre-
spondence between A, (z;) and B, (z,) for each surface
mode. The constitutive component of E (y,z,) corre-
sponding to the radiation mode, shown by the branch-cut
integral in (2), varies in its resultant functional form along
the y axis as the radiation mode propagates the distance d,
although the amplitudes of the spectral functions f(p, z,)
and g(p, z,) are simply related to f(p, z;) and g(p, z;),
respectively, through (3).

Our motivation here is to express such a varying field by
a similar expansion form with the surface wave field as
seen in the first term of the right-hand side of (2). To this
end, recalling e (y, p) to be independent of z, it is quite
natural to expand f(p, z;) and g(p, z;) into a complete set
of the orthonormal functions ¢,(p) and ¢ ,(p) of only p as

'For practical calculations, the upper limit of the second integral is
replaced by an optimally scaled hmit given by angk,, where a>1 (see [4]
for details).



SHIGESAWA AND TSUJI: NEW EQUIVALENT NETWORK METHOD

follows:
N-1
f(P,Zl) = Z AM+n(Zl)¢n(p)
n=0
N-1
g(p,21) = X Ayrinea(2)¥,(p) (4)
n=0
where

noko
fo bu(P)$,(p) dp=35,,,

(5)

Similar expansions hold for the spectral functions
f(p,z,) and g(p, z,) by replacing Ay, (z) and
Apin+a(z1) In (4) with By, (25) and By, y, ,(2,), te-
spectively.

Here, it should be noted that the expansion coefficients
A, (z) and B,(z) are still functions of z because the contin-
uous spectral functions deform as the radiation modes
propagate along the guide. We advance further the expan-
sions of (4) to obtain a discrete set of an infinite number of

what are being called spectral composite modes, defined
by

[ (o) ¥u(p) dp = 5,,,.

noky

&ea(y) =f0”°k°¢n(p)ex(y,p)dp

() =fa"°k°¢n(p)ex(y,p) dp.

nokg

(6)

It is easily proved that these spectral composite modes
have orthonormal relations subject not to the Dirac delta
function but to the Kronecker delta symbol (see Appendix
I). Substituting (4) into (3) and applying the definition of
(6), (1) and (2) can be reduced to the forms

E,(y,2) - Z;OAmul)em(yH ;[AMﬂ(zl)ém(y)
+AM+N+n(Z1)éxn(y)] (7)
E(nm)= L Baz)em()+ L [Buaslm2)(3)

+ BM+N+n(22)éxn(y)]‘ (8)

Since the modal functions of all modes in (7) and (8) are
now subject to the orthonormal relation expressed by the
Kronecker delta symbol, we can picture the simple termi-
nal model for the equivalent network of a homogeneous
dielectric waveguide at least at the local position at z = z;
or z,; one of the terminal ports can be allocated to each of
the two spectral composite modes and surface modes.
However, the amplitude, for example, 4,,,,(z;), of the
spectral composite mode changes in its magnitude as well
as in its phase as it propagates. Such a difference in
magnitudes between two positions at z=2z, and z, re-
minds us that there is no longer a one-to-one correspon-
dence between A,,,, and By, ,or 4, v, and By, no o,
and one of the input spectral composite modes at z = z;

[ SLINE] |
AMJN-I(ZI)I Aman-{Z2)
Bu.ani(Z) ’J/IN-l l//r_H BM;2N-I(ZZ)
LB
' ! ! '
Avalzy) ! treactve partl | Avalz2)
spectral | Buwlzy) 1[/(5“""5 "S“”“k"\)po Bunl(zz) | spectrat
composite composite
modes Ama-i(zy)] | Au-i(Z2) } modes
Bu.na(2)) Pu Oy Bu.n-1Z2)
' ! ~ | !
n 3 N
i ' ! ]
Au(zy) | ;[roducmve porl]i 'AM(Z?)
q Bu(zy) d)o (OSP‘mkatbo Bu(zz) )
Aum(z 1) | | Ay-i(z2)
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I X ;
surface E ! i [S] ! : surface
modes ‘ | i l ' modes
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] ]
d
- ]
Z=z=Z Zz=2Z2

Fig. 2. Equivalent network representation for the homogeneous slab
waveguide, where the spectral composite modes are introduced by
using the complete orthonormal functions ¢, and ¢, defined in each

n

range of p indicated in the network [S] and [$], respectively.

necessarily couples to all of the output spectral composite
modes at z = z, while it propagates. Let us then substitute
f(p, z,) of (4) into that of (3) to obtain

iOBM+n(Z2)¢n(p)

=

= :X;::AM+k(Z1)¢k(P)eXp(“JB(P)d) )

where the coefficients 4 (z,) and B,(z,) are defined so as
to stand for the root-power amplitudes of the spectral
composite mode. By using the orthonormal relation of
¢,(p), we have

(10)

N-1
BM+n(Zz)= Z SnkAM+k(Zl)
k=0

where

Su= [ (p)ou(p)exp(~ B(p)d) dp.  (11)

By following the same method we have
N-1

BM+N+n(ZZ) = Z §nkAM+N+k(Zl) (12)
k=0
where
Se= [0, (0) bi(p) exp(— ¥(p)d) dp.  (13)

Roko

If any field distribution given at z =z, propagates to
the negative z direction, the resultant field at z = z; can be
expressed by relations similar to (10) and (12). As a result,
the equivalent network for a homogeneous dielectric
waveguide of length d can be represented by Fig. 2 and
the terminal amplitudes are governed by the matrix [S| gl
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Fig. 3. Step discontinuity configuration in planar dielectric waveguides.

given in Appendix II. We believe that the formulation
described there, although seen to be a familiar expression
on the surface, is unprecedented because it makes it possi-
ble to analyze the problems of interacting discontinuities
on open waveguides by the network approach that is well
developed for the problems in closed waveguides.

B. Step Discontinuity

Let us next derive the equivalent network for a step
discontinuity between two semi-infinite homogeneous
waveguides I and II with different thicknesses as shown in
Fig. 3. According to the asymmetry of such a structure
with respect to the junction plane, we should consider one
more type of step discontinuity, which is merely inverted
with respect to the plane of Fig. 3. First, we consider that
one of modes is incident normally to the step from the
left-hand side or the right-hand side of Fig. 3. An example
of such cases of excitation is the incidence of the ¢th
surface mode from the left-hand side. Then, the electric
fields tangential to the discontinuity plane at z =0 can be
expressed as follows [4]:

M+2N-1
Ei(y,07)= EO (8,,+ Ryp)ex, () (14)
Mﬁ2N 1
El».0%)= X T,en(y) (15)
p=0
where
e,(y)=e(y) forp=01,- M-1 (m=p)
=é& (y) forp=M, - - M+N-1
(n=p-M)
=¢é (y) forp=M+N, -, M+2N-1
(n=p—-M-N)
(i=Torll). (16)
and T, are the unknown coefficients to be deter-

‘IP
mined. We use here the mode-matching method to fit the

boundary condition on the plane z = 0 in the sense of least
mean squares [4], [8], which considers the error € given by
the following equation:

o0 o)
y [ [ E-ERRGy [ E - HRd
20 [Tl [
— 00 - 00

where H] and H[' are the magnetic fields associated with

(17)

[SSTEP]
AM.gN—ﬂO‘E\ 'nAM.ZN-l(O')
Buaon- nﬁO'Z ¢/N—I ll/N—1 Buan-i(0%)
RN R
| ! i | no
wal AMN(O ) ! ! Amn(07) wal
spectral %y | spectrd
csmposite Mo_lj“’_ Ll/o \!/O —‘}’BLN‘(O—{ cgmposite
modes Y Amn-(0) | L Amna(09) ? modes
Bum.n- | 0, d)N—1 d)N—1 Bun-(0*)
. E | ] NN
I i
AM(O \ ! ! iAm‘ )
Bu@) b, ¢, [Bulo)
Au-0) | LAMA(O‘) \
Bua(07) BMH BMz—l Bu(07)
] ]
surface E l : ! { | surface
modes : i ! i | : modes
Acf07) | ! Ao(0*)
Bof0~ BO BO BofO‘)
| |
\
z=0" z=0"

Fig. 4. Equlvalent network representation for the step discontinuity
shown in Fig. 3.

the electric fields of (14) and (15), respectively, and e!
and £, are the electric and magnetic fields of the 1nc1dent
mode

Minimizing e with respect to the unknowns by the
procedures described in [4], we can easily solve them.
Applying the same procedure to all of the other excitation
cases, one can obtain all of the unknown coefficients R v
and T, which are linked with the elements of the matrix
[Ssrepl representing the isolated step discontinuity, as
mentioned in Appendix III. As a result, a step discontinu-
ity can be expressed by the equivalent network of Fig. 4,
which again has the terminal ports corresponding to each
of the two surface modes and spectral composite modes.
By following the same procedures, we can derive one more
matrix, [S¢rgpl, for the step discontinuity, whose structure
is the inversion of Fig. 3 with respect to the x -y plane at
z=0.

Here it is necessary to comment on a reasonable choice
for a set of expansion functions in (4). The spectral com-
posite modes of our definition are based on the expansion
of the continuous spectral function partitioned into two
finite ranges on the wavenumber (p) plane, and they are
applied to the mode-matching method in the form of (17).
This problem is mathematically the best approximation
calculation based on the unweighted L? norm in the finite
range of variables, so that Legendre polynomials are the
best basis functions [11], [12]. Therefore, we will use them
in the following section.

III. PROPAGATION CHARACTERISTICS OF MODES

ALONG PRACTICAL STRUCTURES
A. Mode Propagation Through Symmetric Double Step

We first discuss the symmetric double step shown in
Figs. 5 and 6. These structures play an important role in
practical planar circuits. For example, Fig. 5 appears as a
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Fig. 5. Symmetric double-step discontinuity: (a) the configuration on
the longitudinal section and (b) its equivalent network. The networks
[S] and [S] represent the coupling effect between the spectral compos-
ite modes in each range of p.

constitutive block of dielectric grating filters [13], while
Fig. 6 often appears as the coupling section of planar
dielectric resonators [14]. We assume that the guide with a
thickness 2¢, in the case of Fig. 5 supports M, surface
modes, while the guide with thickness 2¢, in the case of
both Fig. 5 and Fig. 6 supports M, surface modes. The
structure of Fig. 5(a) is partitioned into three building
blocks by correctly defining the terminal planes as shown.
They are two step discontinuities and one homogeneous
waveguide of length d interconnecting the two interacting
steps. Introducing the equivalent networks [Ssrep); [Srmvels
and [Sgrgp] of Figs. 2 and 4, the complete equivalent
network can be expressed as shown in Fig. 5(b). When the
TE, fundamental surface mode is the only mode incident
from the left-hand side of the structure (as shown), all of
the terminal ports, except for the input port of the incident
surface mode, should be terminated properly by the corre-
sponding characteristic impedance of the equivalent trans-
mission lines for each surface mode or by the matched
termination impedance for each spectral composite mode
(see Appendix IV). As a result, we can obtain the complete
equivalent network for the structure as shown in Fig. 5(b).

On the other hand, the double step of Fig. 6(a) is an air
gap between terminal planes @ and , so the equiva-

—_—

e

|

|

|

|
<
(b)

Fig. 6. Symmetric dduble-step discontinuity with an air gap between.
two planar dielectric waveguides: (a) the configuration on the longitu-
dinal section and (b) its equivalent network.

|
|
¢ !
o
|
|
L

I
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lent network for this gap is expressed in terms of only the
spectral composite modes. Therefore, by taking away the
equivalent transmission lines for the surface modes inter-
connecting planes A’ and B’ in Fig. 5(b), we have the
complete equivalent network for Fig. 6(a), as shown in Fig.
6(b).

Now, assuming the incident TE, surface mode with unit
root power amplitude in both Figs. 5(b) and 6(b), one can
straightforwardly obtain By, ,(—d/2) and By, .(d/2)
for the nth spectral composite mode at planes and
, respectively, as well as B, (—d/2) and B, (d/2) of
the reflected and transmitted surface modes, respectively.
These amplitudes give the total electric field at planes
and through (7) and (8). If the steepest descent path
(SDP) approximation is applied to the first term in the
bracket of (7) and (8) expressing the spectral composite
modes of the radiative part, we can calculate the fields
radiated in both the forward (+ z) and backward (- z)
directions. :

Numerical examples are obtained for the double step
with the dimension indicated in the insets of Figs. 7 and 8.
For the given values of the parameters, only the TE,
fundamental surface mode can propagate in the dielectric
waveguide with thickness 2¢,, while the waveguide of
thickness 2¢, in Fig. 7 supports the TE, and TE, modes.
The reflection coefficient R, and the transmission coeffi-
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Fig. 7. Numerical results of symmetric double-step: (a) reflection and
transmission coefficients, and (b) radiation powers versus the rib width:

cient 7; of the surface mode are shown in Figs. 7(a) and
8(a), while the backward and forward radiation powers are
shown in (b) as a function of the relative length 4 /¢,. The
results indicated by the solid curves are calculated by using
a scale factor of a=7 and by taking the expansion terms
of the Legendre function as N =9 (satisfactory conver-
gence of solutions has already been confirmed in [4]). The
results for only R, and T, can be compared with those
calculated by Rozzi ef al. [9], Koshiba er al. [15], and
Hosono et al. [16]. Koshiba’s approach introduces a per-
fectly conducting boundary away from the guide surface
and applies the finite clement method to the limited region
around the discontinuities. Hosono’s approach replaces the
original unbounded configuration by a corresponding peri-
odic multilayer structure instead of a conducting boundary
as seen in Koshiba’s approach. As for Fig. 7(a), Hosono’s
results are in good agreement with ours, but Koshiba’s
results disagree for d/f,>3.5. Such a discrepancy, as
asserted in their own paper [15], is due to the insufficient
number of elements for the rib region in the calculations.

On the other hand, Rozzi’s results show a very different
feature from those seen in other three results. As noted in
[16], the rib region behaves almost like a low-Q resonator.

1.0
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L —-— Rozzi's approach
------ Koshiba's approach
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= &
TE =22 =
2 I LI, o m 2036. ng=1.0
So UL otz =0.
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(@
15
10

(%)
Ey

n = 2.236, ne=1.0
kotz = 0.2

Backward

Radiation Power
-

i

d/t;
(b

Fig. 8. Numerical results of symmetric double-step with an air gap: (a)
reflection and transmission coefficients, and (b) radiation powers ver-
sus the gap width.

Then, R, and T, may oscillate for the range of about
d>XA,/@2ny) (e., d/t,=0.98), while Rozzi’s results do
not. As for Fig. 8(a), our results for T, agree quite well
with those obtained by Hosono et al., and Koshiba ef al.,
but disagree with Rozzi’s results. Contrary to this, the
computed values of R, exhibit a small amount of the
difference between the results obtained by these ap-
proaches.

For a more precise comparison, the radiation power
must be determined, but our method is only one that
calculates it. Our results, shown in Fig. 7(b), exhibit an
oscillatory nature corresponding to that seen in Fig. 7(a),
and the radiation maxima just coincide with the oscillation
maxima of R, and the minima of Tj, in our results. On the
other hand, the radiation powers shown in Fig. 8(b) mono-
tonically increase with increasing d/t,, corresponding to
similar features of R, and T;, in Fig. 8(a). Incidentally, the
calculations presented here have been made with an error
of about 0.5 percent or less in the power conservation
relation at around 4 /¢, =10.

Koshiba’s and Hosono’s approaches essentially alter the
actual boundary condition for the radiation field. This is a
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21k
(b)

Fig. 9. Numerical results for the periodic structure with a finite number
N, of corrugations: (a) reflected power of the incident TE; mode and
(b) radiation powers. versus the normalized period 2d /A,,.

serious drawback in practical applications because such
approximations make it absolutely impossible to obtain
any information about the real fields scattered and/or
radiated from the discontinuities into the space outside the
original structures of the open type.

B. Mode Propagation Through Periodic Corrugations with
Finite Length

Let us next consider the periodic dielectric corrugations
of finite length as shown in the inset of Fig. 9(a). This
structure is given by the cascade connection of a finite
number of networks given by Figs. 2 and 4, and we can
derive the final equivalent network for Fig. 9 by connect-
ing repeatedly such constitutive networks expressed by the
matrices [ Sgrepls [Sérepl, and [ Sy gl Applying the calcu-
lation procedures mentioned above in subsection A, we
can obtain the numerical results shown in Fig. 9. These
examples are obtained for a structure with the dimensions
indicated in the inset and for a different number N, of
corrugations. The only surface mode propagating in each
homogeneous waveguide section is the TE, fundamental
mode and we consider that this mode incident from the

9
M =15 ny=1.0
"Bolko=1.2
di d: di=d:=d

R

BooAB BO—AB

Fig. 10." Unit cell composing the periodic structure with an almost
invariable phasé constant f). The guides with thickness 27, and 2,
(though the figure shows its half section) have the phase constants
By +AB and B, — AB, respectively.

left-hand side excites the structure. Fig. 9(a) shows the
reflected power of the TE,, surface mode in the case where
N,=10 and 20 corrugations, as a function of the normal-
ized period 2d /A, while Fig. 9(b) shows the forward and
backward radiation powers. If the structure under consid-
eration is infinite in length, the first Bragg reflection
occurs in the limited range of 2d /A, between 0.398 and
0.414, while the power radiation into space occurs only in
the leaky wave region beyond 24 /A, = 0.448 for the pre-
sent case. As seen from Fig. 9(a), it is found that strong
reflection indeed appears at around 2d /A, = 0.406, corre-
sponding to the center frequency of the first Bragg reflec-
tion region and also that significant radiation occurs in the
leaky wave region. However there are many subsidiary
reflection peaks of the surface mode even outside the first
Bragg reflection region, and the radiation still occurs in the
first Bragg reflection region with a complicated feature
arising from the finite length of the periodic structure.
Since a residual loss in the Bragg reflection region often
has a significant effect on the grating filter performance,
let us consider the cause of it for several kinds of struc-
tures, whose dimensions are chosen so that maximum
reflection - occurs at nearly the same mid-stopband fre-
quency, even for different ratios 1, /t,. To have such
structures, we consider one section of corrugations as
shown in Fig. 10. The constitutive subsections, with- thick-
nesses 2¢, and 2¢,, have the phase constants 8, + AB and
B, — AB at the mid-stopband frequency, respectively. Then,
assuming d; =d,, the average phase constant over one
section may be approximated by B,; hence the condition to

_keep B, constant gives a necessary pair of guide thick-

nesses ¢, and ¢, through the characteristic equation of a
slab waveguide. An example for 8,/k,=1.2 and n,=1.5
is shown in Fig. 11 as a function of the AB/k, value, from
which we select two kinds of typical examples to be
discussed below. One is the structure with a weak disconti-
nuity, corresponding to AB/k,=0.04 (t,/t,=1.46), and
the other is that with a rather strong discontinuity, corre-
sponding to AB/k,=1.2 (t,/t,=3.44). Fig. 12 shows the
numerical results of the reflection power of the TE, sur-
face mode and the radiation powers in both the forward
and the backward direction calculated at and near the
mid-stopband frequency. It is found that the behavior of
the reflection and radiation powers is very complicated
owing to the effect of the finite length of the structures.
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Fig. 11. Paired guide thicknesses for keeping B, invariable (B, /ko =
1.2).

However, the mid-stopband insertion loss simply varies as
t,/t,, as shown in Fig. 13. In the case of Fig. 12(b), the
. mid-stopband insertion loss attains a value of about 30 dB
for N,=20, as seen in Fig. 13. If this insertion loss is
converted into the reflection loss of the surface wave mode
only, it becomes 0.0043 dB. As seen from Fig. 12(b),
however, the actual reflection loss at the mid-stopband
frequency is as much as 0.5 dB, so that we may conclude
that the reflection loss is predominantly due to the forward
and backward radiation powers. The solid curves in Figs.
14 and 15 show the maximum value of the radiation power
within the stopband region for different values of N, as a
function of ¢, /¢,. It is found that the radiation power in
each direction remains at its extreme value when N, be-
comes large.

To estimate approximately this extreme value, the for-
ward radiation power is calculated when the TE, surface
mode is incident to the isolated step from the — z direc-
tion, as shown by the inset of Fig. 14, and the result is
shown by the dotted curve. On the other hand, since
almost all of the power of the incident surface mode
returns to the input port at the mid-stopband frequency,
we may estimate the backward radiation power for the
original problem by the forward radiation power when the
surface mode is incident on the isolated step from the + z
direction, as shown in the inset of Fig. 15. The result is
also shown by the dotted curve. The approximate numeri-
cal results, especially of Fig. 15, show a fairly good agree-
ment with the solid curves, and we may conclude that the
residual reflection loss is primarily due to the radiation
power produced at the first step discontinuity of the peri-
odic structure when N, is large. This is a simple but
important result for designing grating filters, antennas,
etc., but a further discussion of this will be the subject of
another paper [17].

Now, as is obvious in Fig. 9(b), the predominant radia-
tion occurs in the backward direction, and the radiation
patterns calculated by the SDP approximation are shown
in Fig. 16 for structures with 2d/\,=0.477, 0.516, and
0.577 in the case where N,=10 and 20. The peak value is

normalized to unity for each radiation pattern, and the
axes along § =0° and 90° coincide with the y and the
negative z directions, respectively. The effect of the finite
length is indeed clearly seen in the narrowing main lobe as
the number of corrugations increases, but more signifi-
cantly, such an effect results in complicated spurious lobes.
However, the direction of each maximum lobe is in good
agreement with the angle calculated from the —1st order
space harmonic wave in the structure extending infinitely
(0., = 30° for Fig. 16(a), 45° for (b), and 60° for (c)).

IV. CONCLUSIONS

We have shown here a new equivalent network approach
which is powerful for analyzing the discontinuity problems
in open dielectric slab waveguides. Numerical examples
have shown our results to be reasonable. One involved a
comparative discussion of the interacting double steps;
another considered the effect of the finite length of the
periodic structures on their propagation and radiation
characteristics.

In this paper, we have mainly discussed the guided-wave
problems on discontinuous waveguides of the open type.
However, the novel network method developed here can
easily be applied to other important electromagnetic wave
problems, for example, dielectric grating leaky wave anten-
nas and wave scattering problems of dielectric and metal
gratings of finite extent. Detailed discussions of them have
already been presented in [18]-[20].

APPENDIX 1

Let & () be the magnetic modal function associated
with €_,.(»). Then, the orthonormal relations for the spec-
tral composite modes are given as follows.

A. Relations Between the Spectral Composite Modes
Belonging to the Same Region of p

fj;gxn(J’)ﬁyk(y) dy
=f_z<f0"°k°¢n(p)ex(y, o) dp}

.{f()nok0¢k(P') h_V(y, 0’) dp’} dy

= [ [ a0 0u(e)

A e In (e ) dpde

= f()"°k°¢k(P’){fonok(’%(p)t?(f) —p’) dp} dp’

nok, ’ ’ '
= [ 6,(0) 81 (0") dp’ =8,

0

(A1)
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the step discontinuity shown in the inset.
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B. Relations Between the Spectral Composite Modes
Belonging to Different Regions of p

f:éxn(y)ﬁyk(y)dy
= [T { [ ale)er.p) do)

: { / a"°k°¢k(p')'hy(y, o) dp’} dy

noko

= [ [ ()9 (0)

oko

'{fwwex(y,p)hy(y,p’) dy} dp dp

= _/::Okwk(pl){_/OnOkO%(p)a(p —0) dp} dp’=0.
oKo (Az)

C. Relations Between a Spectral Composite Mode and a
Surface Mode

f:éxn(y)hym(y) dy
= [ { [ ap)enr.0) o) ()

—_—.‘/(’)noko(i,n’(P){fj;ex(y,p)hym(y) dy} dp=0. (A3)

APPENDIX 1T

The equivalent network of Fig. 2 for a homogeneous
dielectric waveguide of length 4 is represented in the
following matrix form of order 2M +4N: ‘

[6] = [Simella] (A4)
where
(O Oy Oy S Oy Opgy |
Ovar Ovy Ony Ony S Oy
10 Ony Oy Oy Oy S
[Semee] = S Oun Oun Oywr Opw Opy
O S Owar Oyr Oyy Opy
[ Owr Ovw S Our Ouw Oun

(A5)

[a] = [Ao(zl)a‘ : 'aAM—l(Zl)»AM

Oor

(dB)

—————
e
—
——
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-

Radiation Power (backward )

Incident wave

1
1 2 3 4
tilt2
Fig. 15. Maximum backward radiation powers observed within the
stopband region. The solid curves are the results obtained by the
present method for the periodic structure with a finite number of
corrugations N,, while the dotted curve indicates the radiation power
obtained for the step discontinuity shown in the inset.

}
PN
O

[0;,] means the zero matrix of the order /X J and the
superscript ¢ denotes transposition. [S] and [S] are matri-
ces of order N, the elements of which are given by (11) and
(13), respectively, while [S] is a matrix of the order M
corresponding to the surface modes in (3), and its elements
S,,, are given by

Sing = Bngexp (= jBnd). (A8)

AprpPENDIX III

The scattering matrix [Sgrgp] for the isolated step dis-
continuity is expressed as follows:

[6]= [SSTEP][a] (A9)

where the definitions of [a] and [b] are the same as in (A6)
and (A7) with z; and z, replaced by 0~ and 0*, respec-
tively.

Let us first consider the case where only the gth surface
mode is incident on the step from the left-hand side with
amplitude 4,(07) =1 and otherwise zero (4,(07) =0 for

(21),' i AM+N71(21)7 AM+N(Zl)’

Tt AM+2N71‘(21)’ Ao(Zz)a' : '7AM~1(ZZ)7 Ah(zz)a' I

AM+N—1(22)>AM+N(22)>'

t
*Ts AM+2N—1(22)]

(A6)

[b]= [Bo(zl)a' 5 By_1(2), By (), -, Byin-1(21), By n(z),
o Burran—1(21), Bo(23),7 By 1(23), By (z;), -,

BM+N—1(Zz)sBM+N(Zz)"

I BM+2N»1(22)]

t

(A7)
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Fig. 16. Backward radiation patterns from the periodic structure with a
finite number of corrugations N,: (a) normalized period 2d /A, = 0.477,
(b) 2d /A = 0.516, and (c) 2d /Ay = 0.577.

p#qand 4,(07)=0 for all p). For this example, we can
obtain (2M +4N) elements of S,, (p=0,1,---,2M +
4N —1) on the gth row of [Srgp] immediately from the
coefficients R, and T,, as follows:

S,s=R,, (A10)

SM+2N+pq= qu‘

Following the same method for the incidence of each of
the other modes from guide 1 or guide I1, all of the matrix
elements for the equivalent network shown in Fig. 4 are
solved.

APPENDIX IV

The terminal impedance Z, of the spectral composite
mode in the radiative part of the continuous spectrum
(0 < p < ngky) can be defined by

anlyn(y) =&.,(»)

= fo"°"°{wuo/ﬁ<p)}¢n(p>hy(y,p>dp. (A11)

Multiplying both sides by ¢é,,(y) and using the orthonor-

13
mal relation (Al), we obtain
Z~n B f—woo{‘/(')noko¢n(p/) ex(y’ p/) dp/}
. fonoko{wuo/ﬁ(mmp)hy(y,p)dp]dy
-"oko
= f ,(p)
o
[ oo B(0)}6,(0)0(0 = ) do | dp
= [ amo/B()) () 0,0 do'.

In the same way, Z, in the reactive part ( noky<p<
angk,) is obtained:

Zy= = [ {po/v(0)} 4u(0) 0, () dp’. (A13)

noky

(A12)
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