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Abstract—A novel network approachis proposedfor anafyzing interact-

ing disconthruities on open planar dielectric wavegnides by accurately

taking account of both surface modes and waves with continuous spectra.

In our approach, a continuum of the radiation wave is recomposed into a

set of the newly defined “spectraf composite” modes, each of them

carrying a finite magnitude of radiation power, and these new modes, in

conjunction with surface modes, construct the complete orthonormaf set

for expressing an arbitrary locaf field on a dielectric slab waveguide. This

idea allows us to provide the modaf voltages and currents of the spectral

composite modes in the identical definition with those for the surface

modes with discrete eigenvalues, thereby developing an equivalent network

approach effective for solving discontinuity problems, even on an open

wavegoide, with the familiar approach for closed waveguide problems. A

number of numericaf resufts are shown to prove the usefulness of our

approach.

I. INTRODUCTION’

o PEN DIELECTRIC waveguides have become in-

creasingly important in the past few years, particu-

larly in connection with integrated circuits ranging from

millimeter-wave to optical frequencies [1], [2]. In such an

open waveguide, however, the discontinuities often give

rise to serious problems in circuit performance, and it has

recently become necessary to extensively analyze the dis-

continuity y problems with high precision.

In previous papers [3], [4] we described the feature of

mode propagation through an isolated step discontinuity

from a full-wave analytical point of view, and clarified the

behavior of both the radiation field and the surface wave

field. Practical circuits, however, usually do not include a

discontinuity as an isolated case; rather, they consist of an

arbitrary combination of discontinuities connected via the

interconnecting homogeneous dielectric waveguides. On

such a discontinuous structure, the fields vary with the

successive positions along it. Thus it is necessary to con-

sider rigorously the field continuity conditions on the

whole boundary surface of the structure by taking into

account the effect not only of the conversion of power
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among the surface modes and the scattering of power into

the radiation modes [5] but also of the coupling of the

power of the radiation mode into both surface modes anld

the other radiation modes. However, each of the radiation

modes is certainly not an eigenmode like a surface mode

characterized by each of the discrete propagation con-

stants, and its power intensity is infinite according to the

orthonormal relation expressed by the Dirac delta fumlc-

tion. Therefore the scattered and coupled powers men-

tioned above should be discussed by always considering a

continuum of the radiation modes. This fact has been one

of the main reasons making it almost impossible to dle-

velop a simple and effective equivalent network approach

for analyzing open dielectric waveguide problems, aJ-

though an equivalent network approach is quite familiar to

microwave engineers dealing with closed waveguide prolb-

lems [6].

Now, the functional forms of the modal functions thenn-

selves of both surface modes and radiation modes do n ~ot

change as they propagate along a homogeneous slab

waveguide, but their complex amplitude and the continu-

ous spectral amplitude change. The change in the complex

amplitude of each of surface modes is easily pictured “by

the simple network model consisting of uncoupled, parallel

transmission lines, even for a slab waveguide of the open

type. Contrary to this, it is almost impossible to picture the

change in the continuous spectral amplitude of radiation

modes in the same fashion as the surface modes, and, as m

intermediate step, it is natural to expand the varying

continuous spectral function into a discrete sequence of

functions belonging to a complete set. ”As will be shown

below, this idea makes it possible to overcome the diffi-

cult y mentioned previously. A similar expression appeared

in [7] and [8] in connection with an isolated step disconti-

nuity, but problems of its combination were not discussed

at all.

On the other hand, Rozzi et al. [9] expanded not the

varying spectral function, but the nonvarying modal func-

tions into a discrete sequence of the complete function

defined in the coordinate space. This approach, therefore,

leaves the radiation mode still in the form of a continuum,

and their idea does not basically release us from tlhe

difficulty of developing a simple equivalent network.
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Fig. 1. Planar dielectric waveguide uniform in the x direction.

This paper initiates a breakthrough in surmounting this

difficulty. Our idea certainly is based on the expansion of

the continuous spectral amplitude, but we recompose it to

have a discrete set of an infinite number of newly defined

“spectral composite” modes [10], which construct the com-

plete orthonormal set for expressing an arbitrary local field

in conjunction with the surface modes. It is also proved

that each of the spectral composite modes carries a finite

magnitude of radiation power according to the orthonor-

mal relation expressed not by the Dirac delta function, but

by the Kronecker delta symbol, such as the surface modes.

This means that the terminal parameters (root power am-

plitude, wave impedance, etc.) of the equivalent network

for the spectral composite modes can be defined identi-

cally with those for the surface modes, and we can allocate

the discrete terminal ports to each of the two types of

mode. As a result, our approach, unlike Rozzi’s, can treat

independently each of the isolated step discontinuities and

the interconnecting homogeneous slab waveguides as a

building block in a usual equivalent network.

After explaining briefly our idea and developing a math-

ematical formulation in Section II, the effectiveness of our

approach will be demonstrated by comparing it with pub-

lished results in Section III-A. These results are then

applied to discuss the wave behavior along dielectric corru-

gations of finite extent on slab waveguides of the open

type in Section HI-B.

II. GENERAL APPROACH

A. Homogeneous Dielectric Waveguide and Spectral

Composite Mode

To make our idea clear, we first consider a homogeneous

dielectric slab waveguide of the type shown in Fig. 1. We

assume here that M surface modes and the radiation

modes polarized in the x direction are traveling to the

positive z direction. Let eXJ(y), hvj(y) and eX( y, p),

~Y(Y, P) be the orthonormal modal functions of the ~th
surface mode and the radiation mode, respectively (see [5]

for their functional forms). Here p denotes the transverse

wavenumber of the radiation mode in the y direction

outside the slab. Each type of modal function is normal-

ized in terms of the Kronecker delta symbol or Dirac delta

function as noted in [5, sec. 8.5]. Although the wavenum-

ber p covers all of the values from O to co, the radiation

modes in the range O < p < n ~ko are propagating into the z

direction, while those in the range noko < p < cc are non-

propagating. Therefore, the total electric field EX(y, Zl) on

the plane at z = ZI is completely expressed by the follow-

ing equation [5]:

+/nOk”f(~,~,)e.(y,p)d~
o

+~’’okod~,Zl)ex(ytP) C@ (1)
noko

where ~( p, Zl) and g( p, Zl) are the continuous spectral

functions for the radiation modes at z = ZI and the coeffi-

cients A~( Zl) stand for the root-power amplitude of the

surface modes.

Now, the electric field of (1) after propagating to the

plane at z = Z2( > ZI with d = Zz – Zl) can be written as

follows :

M–1

Ex(y,22) = ~ Bn(z,)exm(y)

m=o

+/’20k0f(p,z,)e.(~,~)d~
o

+~”nokog(~,~,)e..(~~)@ (2)
noko

where

Bm(z2)= Am(z,)exp(–j~~d)

f(p, z,)= f(p, z,)exp(-jP(p)d)

L7(P, z2)=g(p, zl)eW-y(p)d). (3)

fi~ is the phase constant of the mth surface mode, while

B(P) =/’w and D(P) = - j{-=

– .Mp) are the phase constants of the propagating and
the nonpropagating radiation modes, respectively.

The modal functions of both surface modes and radia-

tion modes in (1) and (2) do not change as they propagate

along the guide axis. Then, there is a one-to-one corre-

spondence between A ~ (zl) and Bm( Zz) for each surface

mode. The constitutive component of EX( y, Z2) corre-

sponding to the radiation mode, shown by the branch-cut

integral in (2), varies in its resultant functional form along

the y axis as the radiation mode propagates the distance d,

although the amplitudes of the spectral functions ~( p, z?)

and g( p, Z2) are simply related to t( p, Zl) and g( p, Z1),

respectively, through (3).

Our motivation here is to express such a varying field by

a similar expansion form with the surface wave field as

seen in the first term of the right-hand side of (2). To this

end, recalling eX( y, p) to be independent of z, it is quite

natural to expand ~( p, ZI ) and g( p, Z1) into a complete set

of the orthonormal functions @~(p) and +.(p) of only p as

lFor practical calculations, the upper limit of the second integral is
replaced by am optimally scaled hmit given by rmo k., where a >1 (see [4]
for details).
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follows:

N–1

f(P, zJ = z ~Jf+n(zJ+n(P)
R=(J

N–1

g(~zl) = &&+ N+.(zl)*.(~) (4)

where

jn”’”+m(d%(ddp = CL

~\jkO+m(P)+n(P) dP=8mn. (5)

Similar expansions hold for the spectral functions

~(P, ZZ) an! g(p, zZ) by replacing A~+.(zl) and

~A4+N+n(zl) in (4) with ~M+n(z21 and ‘Jf+jv+n(z2), re-
spectively.

Here, it should be noted that the expansion coefficients

Ai(z) and Bi(z) are still functions of z because the contin-

uous spectral functions deform as the radiation modes

propagate along the guide. We advance further the expan-

sions of (4) to obtain a discrete set of an infinite number of

what are being called spectral composite modes, defined

by

~xn(~)=~k~k”+n(p)ex(yjp)~P. (6)

It is easily proved that these spectral composite modes

have orthonormal relations subject not to the Dirac delta

function but to the Kronecker delta symbol (see Appendix

I). Substituting (4) into (3) and applying the definition of

(6), (1) and (2) can be reduced to the forms

M–1 N–1

lix(y, zl) = ~ Am(zl)exm(y)+ ~ [AM+n(zl)Fxn(y)

~=o *=ij

+A M+N+n(z,)%z(~)] (7)

M–1 N–1

EX(y, z2) = ~ B~(z2)eX~(y)+ ~ [BM+~(z2)i7X~(y)
~=o ~=o

+ BM+N+n (Z2)~Xn(Y)1. (8)

Since the modal functions of all modes in (7) and (8) are

now subject to the orthonormal relation expressed by the

Kronecker delta symbol, we can picture the simple termin-

al model for the equivalent network of a homogeneous

dielectric waveguide at least at the local position at z = Z1

or Z2; one of the terminal ports can be allocated to each of

the two spectral composite modes and surface modes.

However, the amplitude, for example, AM+ ~(zl), of the

spectral composite mode changes in its magnitude as well

as in its phase as it propagates. Such a difference in

magnitudes between two positions at z = Z1 and Zz re-

minds us that there is no longer a one-to-one correspon-

dence between AM+. and BM+n or AM+N+n and BM+N+n,

and one of the input spectral composite modes at z = Z1

spectral
compaate,

modes AM.N-I(zI)I
I

BM.N.I(ZI) I @ 4,

AM-T(ZI) ~ ~

{:: ., ~

BM.I(Z fk-1

surface ~~ ~

modes
, [s]

Ao(zj ! :
BO(ZI El

‘1

E
IAhz,)
BM.N(ZZ)

I AWN-Iz2)
BM. .

1/

lAM\z2)
BM Z2
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mcdes
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~[ surface

I&l:,)
modes

4
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Fig. 2. Equivalent network representation for the homogeneous slab

waveguide, where the spectraf composite modes are introduced by
using the complete orthonormal funcjons +. :nd +. defined in each

range of p indicated in the network [S] and [,S ], respectively.

necessarily couples to all of the output spectral composite

modes at z = Z2 while it propagates. Let us then substitute

f(P, ZI) of (4) into that of (3) to obtain

N–1

x BM+n(z2)4L(P)
n-o

N–1

= ~ A~+~(zJ%(p)exp( -~P(p)d) (9)
k=O

where the coefficients Aq( z, ) and B$( z, ) are defined so as

to stand for the root-power ampktudes of the spectral

composite mode. By using the orthonormal relation of

@,,(P), we have

N–1

BM+n(z2) = x %diw,k(zl)
k=O

where

&=j”OkO@n(P)%(P)exP(-~ ~(P)@dP
o

By following the same method we have

N–1

B M+ N+n(z2) = ~ ‘nkAM+N+k(zl)

(lo)

(11)

(12)
k=O

where

$zk=~kO+rz(P)+,( P)exP(-Y(P)d)dP (13)

If mY field distribution given at z = z, propagates to

the negative z direction, the resultant field at z = ZI can be

expressed by relations similar to (10) and (12). As a result,

the equivalent network for a homogeneous dielectric

waveguide of length d can be represented by Fig. 2 and

the terminal amplitudes are governed by the matrix [S~lNE]
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guide I / guide H

Fig. 3. Step discontinuity configuration in planar dielectric waveguides.

given in Appendix II. We believe that the formulation

described there, although seen to be a familiar expression

on the surface, is unprecedented because it makes it possi-

ble to analyze the problems of interacting discontinuities

on open waveguides by the network approach that is well

developed for the problems in closed waveguides.

B. Step Discontinuity

Let us next derive the equivalent network for a step

discontinuity y between two semi-infinite homogeneous

waveguides I and II with different thicknesses as shown in

Fig. 3. According to the asymmetry of such a structure

with respect to the junction plane, we should consider one

more type of step discontinuity, which is merely inverted

with respect to the plane of Fig. 3. First, we consider that

one of modes is incident normally to the step from the

left-hand side or the right-hand side of Fig. 3. An example

of such cases of excitation is the incidence of the q th

surface mode from the left-hand side. Then, the electric

fields tangential to the discontinuity plane at z = O can be

expressed as follows [4]:

M+2N–1

E~(y,O-) = ~ (8,P+R,P)e~P(y) (14)
J)=()

M+2N–1

(15)
J)=(J

where

e;p(y)=eL(y) forp=O,l,. ... ill-l (Jn=p)

= G(Y) forp=114,. ... it4+ l-l

(n=p-M)

= Z.(Y) forp=h4+ N,. ... Ivf+2il-l

(fl=p-M-N)

(i= Ior II). (16)

R ~p and TqP are the unknown coefficients to be deter-

mined. We use here the mode-matching method to fit the

boundary condition on the plane z = O in the sense of least

mean squares [4], [8], which considers the error c given by

the following equation:

where H; and H; are the magnetic fields associated with

spectral
composite .

mcxles

surface ,
mcdes

spectral
composite

modes

sutiace
modes

\’ --’l

I Iz. l)- Z. 0+
Fig. 4. Equivalent network representation for the step discontinuity

shown in Fig. 3

the electric fields of (14) and (15), respectively, and e~~

and h ~~ are the electric and magnetic fields of the incident

mode.

Minimizing c with respect to the unknowns by the

procedures described in [4], we can easily solve them.

Applying the same procedure to all of the other excitation

cases, one can obtain all of the unknown coefficients R ~P

and TqP which are linked with the elements of the matrix

[5’s~~P] representing the isolated step discontinuity, as
mentioned in Appendix III. As a result, a step discontinu-

ity can be expressed by the equivalent network of Fig. 4,

which again has the terminal ports corresponding to each

of the two surface modes and spectral composite modes.

By following the same procedures, we can derive one more

matrix, [ S<~~P], for the step discontinuity y, whose structure

is the inversion of Fig. 3 with respect to the x – y plane at

Z=o.

Here it is necessary to comment on a reasonable choice

for a set of expansion functions in (4). The spectral com-

posite modes of our definition are based on the expansion

of the continuous spectral function partitioned into two

finite ranges on the wavenumber (p) plane, and they are

applied to the mode-matching method in the form of (17).

This problem is mathematically the best approximation
calculation based on the unweighed L2 norm in the finite

range of variables, so that Legendre polynomials are the

best basis functions [11], [12]. Therefore, we will use them

in the following section.

HI. PROPAC+ATIONCHARACTERISTICS OF MODES

ALONG PRACTICAL STRUCTURES

A. Mode Propagation Through Symmetric Double Step

We first discuss the symmetric double step shown in

Figs. 5 and 6. These structures play an important role in

practical planar circuits. For example, Fig. 5 appears as a



SHIGESAWA AND TSUJI : NEW EQUIVALENT NETWORK METHOD
7

I k d 4 I
(b)

Fig. 5. Symmetric double-step discontinuity: (a) the configuration on

th~ longit~dinat section and (b) its equivalent network. The networks

[S] and [S] represent the coupling effect between the spectrat compos-
ite modes in each range of p.

constitutive block of dielectric grating filters [13], while

Fig. 6 often appears as the coupling section of planar

dielectric resonators [14]. We assume that the guide with a

thickness 2tl in the case of Fig. 5 supports kfl surface

modes, while the guide with thickness 2t ~ in the case of

both Fig. 5 and Fig. 6 supports i142 surface modes. The

structure of Fig. 5(a) is partitioned into three building

blocks by correctly defining the terminal planes as shown.

They are two step discontinuities and one homogeneous

waveguide of length d interconnecting the two interacting

steps. Introducing the equivalent networks [ ~sTEpl>[~L.Id,
and [S~T~P] of Figs. 2 and 4, the complete equivalent

network can be expressed as shown in Fig. 5(b). When the

TEO fundamental surface mode is the only mode incident

from the left-hand side of the structure (as shown), all of

the terminal ports, except for the input port of the incident

surface mode, should be terminated properly by the corre-

sponding characteristic impedance of the equivalent trans-

mission lines for each surface mode or by the matched

termination impedance for each spectral composite mode

(see Appendix IV). As a result, we can obtain the complete
equivalent network for the structure as shown in Fig. 5(b).

On the other hand, the double step of Fig. 6(a) is an air

gap between terminal planes @ and @, so the equiva-

@,,@ @, ,03

(a)

—

(b)

Fig. 6. Symmetric double-step discontinuity with an air gap between

two planar dielectric wavegtides: (a) the configuration on the longitu-
dinal section and (b) its equivalent network.

lent network for this gap is expressed in terms of only the

spectral composite modes. Therefore, by taking away the

equivalent transmission lines for the surface modes inter-

connecting planes A’ and B’ in Fig. 5(b), we have the

complete equivalent network for Fig. 6(a), as shown in Fig.

6(b).

Now, assuming the incident TEO surface mode with unit

root power amplitude in both Figs. 5(b) and 6(b), one can

straightforwardly obtain BN1 + n(- d/2) and BNl+n(d/2)

for the n th spectral composite mode at planes @ and

@, respectively, as well as Bm(- d/2) and Bm(d/2) of

the reflected and transmitted surface modes, respectively.

These amplitudes give the total electric field at planes @

and @ through (7) and (8). If the steepest descent path

(SDP) approximation is applied to the first term in the

bracket of (7) and (8) expressing the spectral composite

modes of the radiative part, we can calculate the fields

radiated in both the forward (+ z) and backward (– z)

directions.

Numerical examples are obtained for the double step
with the dimension indicated in the insets of Figs, 7 and 8.

For the given values of the parameters, only the TEO

fundamental surface mode can propagate in the dielectric

waveguide with thickness 2t~, while the waveguide of

thickness 2tl in Fig. 7 supports the TEO and TE2 modes.

The reflection coefficient R ~ and the transmission coeffi-



8 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 1, JANUARY 1989

1.0

‘\

0.8 -

— Present approach ‘~

‘-— Rozzi’s approach

0.6 - ‘----- Koshiba’s approach—.
1- ‘— Hosono’s approach—

dltz

(a)

I

nl
nO ~ /\/l

n, = 3.4, no=l.0
kot, = 0,3n

t,/t2=2.o

1 2 3 L 5
dlt,

(b)

Fig. 7. Numerical results of symmetric double-step: (a) reflection and

transmission coefficients, and (b) radiation powers versus the rib width.

cient TO of the surface mode are shown in Figs. 7(a) and

8(a), while the backward and forward radiation powers are

shown in (b) as a function of the relative length h /t2.The

results indicated by the solid curves are calculated by using

a scale factor of a = 7 and by taking the expansion terms

of the Legendre function as N = 9 (satisfactory conver-

gence of solutions has already been confirmed in [4]). The

results for only R o and To can be compared with those

calculated by Rozzi et al. [9], Koshiba et al. [15], and

Hosono et al. [16]. Koshiba’s approach introduces a per-

fectly conducting boundary away from the guide surface
and applies the finite element method to the limited region

around the discontinuities. Hosono’s approach replaces the

original unbounded configuration by a corresponding peri-

odic multilayer structure instead of a conducting boundary

as seen in Koshiba’s approach. As for Fig. 7(a), Hosono’s

results are in good agreement with ours, but Koshiba’s

results disagree for d/tz >3.5. Such a discrepancy, as

asserted in their own paper [15], is due to the insufficient

number of elements for the rib region in the calculations.

On the other hand, Rozzi’s results show a very different

feature from those seen in other three results. As noted in

[16], the rib region behaves ahnost like a low-Q resonator.

1,0- -—-—- — -—-------- .-

ITJ

0.8 - — Present ~roach

‘-— Rozzi’s approach

‘----- Koshiba’s approach

~0.6 - —— Hosono’s approach

+ no—
v TEo. 1

&
o 2 4 6 8

‘+3 E Forvmrd

no
y

n, = 2,236, nO=l.O

k~t~ = 0.2

2 4 6 8 10

)

rj/t2

(b)

Fig. 8. Numerical results of symmetric double-step with an air gap: (a)

reflection and transmission coefficients, and (b) radiation powers ver-

sus the gap width.

Then, R. and To may oscillate for the range of about

d > AO/(2rzl) (i.e., d/tl = 0.98), while Rozzi’s results do

not. As for Fig. 8(a), our results for TO agree quite well

with those obtained by Hosono et al., and Koshiba et al.,

but disagree with Rozzi’s results. Contrary to this, the

computed values of R ~ exhibit a small amount of the

difference between the results obtained by these ap-

proaches.

For a more precise comparison, the radiation power

must be determined, but our method is only one that
calculates it. Our results, shown in Fig. 7(b), exhibit an

oscillatory nature corresponding to that seen in Fig. 7(a),

and the radiation maxima just coincide with the oscillation

maxima of RO and the minima of To in our results. On the

other hand, the radiation powers shown in Fig. 8(b) mono-

tonically increase with increasing d/tz, corresponding to

similar features of R o and To in Fig. 8(a). Incidentally, the

calculations presented here have been made with an error

of about 0.5 percent or less in the power conservation

relation at around d/tz = 10.

Koshiba’s and Hosono’s approaches essentially alter the

actual boundary condition for the radiation field. This is a
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60/ko = 1.2
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Fig. 10. Unit cell composing the periodic structure with an afmost

invariable phase constant &. The guides with thickness 2 tl and 2t2
@ough the figure shows its half section) have the phase constants

/30 + A~ and ~0 – A/3, respectively.

left-hand side excites the structure. Fig. 9(a) shows the

reflected power of the TEO surface mode in the case where

NC= 10 and 20 corrugations, as a function of the normal-

ized period 2d/ A ~, while Fig. 9(b) shows the forward and

backward radiation powers. If the structure under consid-

eration is infinite in length, the first Bragg reflection

occurs in the limited range of 2 d/ A. between 0.398 and

0.414, while the power radiation into space occurs only in

the leaky wave region beyond 2d/ A ~ = 0.448 for the pre-

sent case. As seen from Fig. 9(a), it is found that strong

/ ‘“w’ reflection indeed appears at around 2d/ A ~ = 0.406, corre-

-4
0.4 0.5 0.6 0.7 0.8 0.9

2d/A,
(b)

Fig. 9. Numericat results for the periodic structure with a finite number

NC of corrugations: (a) reflected power of the incident TEO mode and
(b) radiation powers. versus the normalized period 2d/Ao.

serious drawback in practical applications because such

approximations make it absolutely impossible to obtain

any information about the real fields scattered and/or

radiated from the discontinuities into the space outside the

original structures of the open type.

B. Mode Propagation Through Periodic Corrugations with

Finite Length

Let us next consider the periodic dielectric corrugations

of finite length as shown in the inset of Fig. 9(a). This

structure is given by the cascade connection of a finite

number of networks given by Figs. 2 and 4, and we can

derive the final equivalent network for Fig. 9 by connect-

ing repeatedly such constitutive networks expressed by the

matrices [ SsTEP], [ S<TEP], ~d [ S~I~~]. Applying the calcu-
lation procedures mentioned above in subsection A, we

can obtain the numerical results shown in Fig. 9. These

examples are obtained for a structure with the dimensions

indicated in the inset and for a different number NC of

corrugations. The only surface mode propagating in each

homogeneous waveguide section is the TEO fundamental

mode and we consider that this mode incident from the

spending to the center frequency of the first Bragg reflec-

tion region and also that significant radiation occurs in the

leaky wave region. However there are many subsidiary

reflection peaks of the surface mode even outside the first

Bragg reflection region, and the radiation still occurs in the

first Bragg reflection region with a complicated feature

arising from the finite length of the periodic structure.

Since a residual loss in the Bragg reflection region often

has a significant effect on the grating filter performance,

let us consider the cause of it for several kinds of struc-

tures, whose dimensions are chosen so that maximum

reflection occurs at nearly the same mid-stopband fre-

quency, even for different ratios tl/t2.To have such

structures, we consider one section of corrugations as

shown in Fig. 10. The constitutive subsections2with thick-

nesses 2tland 2t ~, have the phase constants /30+ A/3 and

PO– A~ at the mid-stopband frequency, respectively. Then,

assuming dl = dz, the average phase constant over one

section may be approximated by BO; hence the condition to

keep PO constant gives a necessary pair of guide thick-

nesses tland t~ through the characteristic equation of a

slab’ waveguide. An example for ~O/kO = 1.2 and nl = 1.5

is shown in Fig. 11 as a function of the A~/kO value, from

which we select two kinds of typical examples to be

discussed below. One is the structure with a weak disconti-

nuity, corresponding to A~/kO = 0.04 ( tl/t~= 1.46),and

the other is that with a rather strong discontinuity, corre-

sponding to A~/ko =1.2 (tl/t2= 3.44). Fig. 12 shows the

numerical results of the reflection power of the TEO sur-
face mode and the radiation powers in both the forward

and the backward direction calculated at and near the

mid-stopband frequency. It is found that the behavior of

the reflection and radiation powers is very complicated

owing to the effect of the finite length of the structures.



10 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 1, JANUARY 1989

:4--”

0.2

t
1

0 0,02 0.04 006 0.08 0.10 0.12 0.14

Fig. 11. Paired guide thicknesses for keeping B. invariable ( PO\kO =
1.2).

However, the mid-stopband insertion loss simply varies as

tl/i2, as shown in Fig. 13. In the case of Fig. 12(b), the

mid-stopband insertion loss attains a value of about 30 dB

for NC =“ 20, as seen in Fig. 13. If this insertion loss is

converted into the reflection loss of the surface wave mode

only, it becomes 0.0043 dB. As seen from Fig. 12(b),

however, the actual reflection loss at the rnid-stopband

frequency is as much as 0.5 dB, so that we may conclude

that the reflection loss is predominantly due to the forward

and backward radiation powers. The solid curves in Figs.

14 and 15 show the maximum value of the radiation power

within the stopband region for different values of NC as a

function of tl/t2.It is found that the radiation power in

each direction remains at its extreme value when NC be-

comes large.

To estimate approximately this extreme value, the for-

ward radiation power is calculated when the TEO surface

mode is incident to the isolated step from the – z direc-

tion, as shown by the inset of Fig. 14, and the result is

shown by the dotted curve. On the other hand, since

almost all of the power of the incident surface mode

returns to the input port at the mid-stopband frequency,

we may estimate the backward radiation power for the

original problem by the forward radiation power when the

surface mode is incident on the isolated step from the + z

direction, as shown in the inset of Fig. 15. The result is

also shown by the dotted curve. The approximate numeri-

cal results, especially of Fig. 15, show a fairly good agree-

ment with the solid curves, and we may conclude that the

residual reflection loss is primarily due to the radiation

power produced at the first step discontinuity of the peri-

odic structure when NC is large. This is a simple but

important result for designing grating filters, antennas,

etc., but a further discussion of this will be the subject of

another paper [17].

Now, as is obvious in Fig. 9(b), the predominant radia-

tion occurs in the backward direction, and the radiation

patterns calculated by the SDP approximation are shown

in Fig. 16 for structures with 2d/A0 = 0.477, 0.516, and

0.577 in the case where NC= 10 and 20. The peak value is

normalized to unity for each radiation pattern, and the

axes along 8 = 0° and 90° coincide with the y and the

negative z directions, respectively. The effect of the finite

length is indeed clearly seen in the narrowing main lobe as

the number of corrugations increases, but more signifi-

cantly, such an effect results in complicated spurious lobes.

However, the direction of each maximum lobe is in good

agreement with the angle calculated from the – 1st order

space harmonic wave in the structure extending infinitely

(t9~= = 30° for Fig. 16(a), 45° for (b), and 60° for (c)).

IV. CONCLUSIONS

We have shown here a new equivalent network approach

which is powerful for analyzing the discontinuity y problems

in open dielectric slab

have shown our results

comparative discussion

another considered the

periodic structures on

characteristics.

waveguides. Numerical examples

to be reasonable. One involved a

of the interacting double steps;

effect of the finite length of the

their propagation and radiation

In this paper, we have mainly discussed the guided-wave

problems on discontinuous waveguides of the open type.

However, the novel network method developed here can

easily be applied to other important electromagnetic wave

problems, for example, dielectric grating leaky wave anten-

nas and wave scattering problems of dielectric and metal

gratings of finite extent. Detailed discussions of them have

already been presented in [18]–[20].

APPENDIX I

Let ~Y~(y) be the magnetic modal function associated

with ;X~( y). Then, the orthonormal relations for the spec-

tral composite modes are given as follows.

A. Relations Between the Spectral Composite Modes

Belonging to the Same Region of p

Jm%n(Y)~yk(Y)dY
—m

‘f_~{(0k04.(p)e.(.v,p)dp)

{~”kook(p)h,(y,p)dp} dy

=/nokoJnok”@n(P)@k( P’)
00

{f:mex(Y,P)h,(~,~ ’)dy}dpdp’

‘/nOkO’+,(P’)(~OkO% (P)f% - P’) + dd
o 0

=/nOkO@n(P’)@k(P’) dP’=~nk.
o

(Al)
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m =1.5, nO=l.O
fIo/ko= 1.2 Reflection Power

W:d

( TE o mode )

Radiation Power
(backward )

Radiation l%wer

(forward )
Bo.A13 %AB

AWko= O.OfI (tdt,=l .46 )

2dl Ao

(a)

11

(—
k
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——- =20

—-— Nc.10
[ -------- =20
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~
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J
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Fig. 12. Reflection and radiation powers for different number of corrugations NC: (a) weak discontinuity case (A~/ko = 0.04,

i.e., tl/z2 =1.46), and (b) strong discontinuity case (A13/k0 = 0.12, i.e., tl/t2= 3.44).

tllt2

Fig. 13. Mid-stopband insertion loss as a function of the thickness ratio

tl/t2of two slab waveguides.

step discontinuity

Nc=1O

,“

,/
/

/=
Rodiotion

Incident wave

2 2 L-
tlltz

Fig. 14. Maximum forward radiation powers observed within the stop-
band region. The solid curves are the results obtained by the present
method for the periodic structure with a finite number of corrugations

N,, while the dotted curve indicates the radiation power obtained for
the step discontinuity shown in the inset.
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B. Relations Between the Spectral Composite Modes

Belonging to D~ferent Regions of p

J*%n(Y)~yk(Y)dY
—cc

‘~~m{~”k”%(~)e.(y,~)dp}

(1 }
::kO*~(P’)kY(Y, P’) d~’ dy

=Jan0k0Jn0k04dP’)%(P)
nOkO O

(/:mex(Yp)~y(Y,p’)dy )dpdp

‘~kO*k(P’)(jnOkO% (~)8(~-rO’) dp} d~’= O-
0

(A2)

C. Relations Between a Spectral Composite Mode and a

Surface Mode

jm%n(y)hym(y)dy
—m

‘/_~{(OkO@.(p)e.(y,p)dp)hy~(y)dy

=fnOkO@dP)(Jm fz(YjP)LdY)dY} dP=o (As)
o —m

APPENDIX II

The equivalent network of Fig. 2 for a homogeneous

dielectric waveguide of length d is represented in the

following matrix form of order 2&i+ 4N:

[b] = [S~l~~][a] (A4)

where

[sLINEI=

o OMN OMN s OMN OMNMM

o ONN ONN ONM f? ONNNM
o ONN ONN ONM ONN iNM
s OMN OMN OMM OMN OMN

oNM ~ ONM ONM ONN ONN

oAIJJ ONN i OAJJ,-Jox. 0..
( 5)

1-’01“’P”’SY2=K

I Incident wave

.401__—.——
1 2 3 4

tl/t2

Fig. 15. Maximum backw~d radiation powers observed within the

stopband region. The solid curves are the results obtained by the

present method for the periodic structure with a finite number of
corrugations NC, while the dotted curve indicates the radiation power
obtained for the step discontinuity shown in the inset.

[0,~] means the zero matrix of theprderl~J and the
superscript t denotes transposition. [S] and [S] are matri-

ces of order N, the elements of which are given by (11) and

(13), respectively, while [S] is a matrix of the order Al

corresponding to the surface modes in (3), and its elements

S~~ are given by

Smq= tl~qexp (– j~~d). (A8)

APPENDIX 111

The scattering matrix [Ss~EP] for the isolated step dis-

continuity is expressed as follows:

[b] = [Ss~~P][a] (A9)

where the definitions of [ a] and [b] are the same as in (A6)

and (A7) with Z1 and Z2 replaced by O- and O‘, respec-

tively.

Let us first consider the case where only the qth surface
mode is incident on the step from the left-hand sid~ with

amplitude Aq(O – ) = 1 and otherwise zero (AP(O – ) = O for

[a] = [Ao(zl),. ~- ,AM_l(zl), AM(zl),. . ., AM+ N_l(zl), AM+ N(zl),

. . . ,A M+,N_l(zl), Ao(z,), o. ., A~_l(z,), AM(z,),. . . .

A M+ N_l(z,), A~+N(z,),. . ., A~+,N_1(z2)]’ (A6)

[b] = [Bo(zl),. . .,~M_l(zl), ~M(Z1),. . ., BM+N_l(zl), ~M+N(zl),

M+2N_1(zJ, Bo(z2), ~ ., BM_1(z2), BM(z2),. 0.,. . ..B

M+ N_1(z2), BM+N(z,),. . ,B~+,N_l(z,)]’.B (A7)
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“=20x--’’+””
.
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Relatrve Power (dB)
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Relatwe Power (dB) -- Relatlve Power (d B)
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Relative Power (d B) Relative Power (dB)
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Fig. 16. Backward radiation patterns from the periodic structure with a
finite number of corrugations N,: (a) normalized period 2d/ko = 0.477,

(b) 2d/Xo = 0.516, and (C) 2d/Ao = 0.577.

p # q and AP(O + ) = O for all p). For this example, we can

obtain (21W+4N) elements of SP~ (p= 0,1,. . .,2J4+

4N – 1) on the qth row of [SsT~P] immediately from the

coefficients R ~P and T~p as follows:

Following the same method for the incidence of each of

the other modes from guide I or guide II, all of the matrix

elements for the equivalent network shown in Fig. 4 are

solved.

APPENDIX IV

The terminal impedance ~. of the spectral composite

mode in the radiative part of the continuous spectrum

(0< P < nOkO) can be defined by

z&n(Y)=%(Y)

=J”OkO{@Po/B(P)}@n(P)~y(YP)~P.(All)
o

Multiplying both sides by ZXn(y) and using the orthonor-

mal relation (Al), we obtain

Z.= /~w([O’O@~(p’)eX(y, p’) alp’}

[J 1
onOkO{@Po/B(P)} @.( P)hy(Y, P)dP 4

=(OkO%(P’)

‘[J 1
onOkO{wo/B(P)}risn( P) f51P-P’)dP W

= jnOkO{uPo!B(P’) }+n(P’)$n(P’) ~P’. (A~2)
o

In the same way, ~. in the reactive part (nOkO < p <

an ~ko) is obtained:

~,= _ j ~%ka
{ WO/Y(P’)} +.( P’)+n(P’) alp’. (A13)
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